343 research outputs found

    Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster

    Full text link
    We develop a stochastic modeling approach based on spatial point processes of log-Gaussian Cox type for a collection of around 5000 landslide events provoked by a precipitation trigger in Sicily, Italy. Through the embedding into a hierarchical Bayesian estimation framework, we can use the Integrated Nested Laplace Approximation methodology to make inference and obtain the posterior estimates. Several mapping units are useful to partition a given study area in landslide prediction studies. These units hierarchically subdivide the geographic space from the highest grid-based resolution to the stronger morphodynamic-oriented slope units. Here we integrate both mapping units into a single hierarchical model, by treating the landslide triggering locations as a random point pattern. This approach diverges fundamentally from the unanimously used presence-absence structure for areal units since we focus on modeling the expected landslide count jointly within the two mapping units. Predicting this landslide intensity provides more detailed and complete information as compared to the classically used susceptibility mapping approach based on relative probabilities. To illustrate the model's versatility, we compute absolute probability maps of landslide occurrences and check its predictive power over space. While the landslide community typically produces spatial predictive models for landslides only in the sense that covariates are spatially distributed, no actual spatial dependence has been explicitly integrated so far for landslide susceptibility. Our novel approach features a spatial latent effect defined at the slope unit level, allowing us to assess the spatial influence that remains unexplained by the covariates in the model

    OPTIMIZING STOCHASTIC SUSCEPTIBILITY MODELLING FOR DEBRIS FLOW LANDSLIDES: MODEL EXPORTATION, STATISTICAL TECHNIQUES COMPARISON AND USE OF REMOTE SENSING DERIVED PREDICTORS. APPLICATIONS TO THE 2009 MESSINA EVENT.

    Get PDF
    Il presente lavoro di ricerca è stato sviluppato al fine di approfondire approcci metodologici nell'ambito della sucscettibilità da frana. In particolare, il tema centrale della ricerca è rappresentato dal tema specifico dell'esportazione spaziale di modelli di suscettibilità nell'area mediterranea. All'interno del topic specifico dell'esportazione di modelli predittivi spaziali sono state approfondite tematiche relative all'utilizzo di differenti algoritmi o di differenti sorgenti, derivate da DEM o da coperture satellitari.The present work has been developed in order to enhance current methodological approaches within the big picture of the landslide susceptibility. In particular, the central topic was the spatial exportation of landslide susceptibility models within the Mediterranean sector. Within the specific subject pertaining to the spatial exportation of predictive models, different algorithms as well as different data sources have been tested. Data sources experiments assessed the integration of DEM- and remotely sensed- derived parameters in order to improve the landslide prediction

    Zero viscosity limit of the Oseen equations in a channel

    Get PDF
    Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics

    On the Fly Orchestration of Unikernels: Tuning and Performance Evaluation of Virtual Infrastructure Managers

    Full text link
    Network operators are facing significant challenges meeting the demand for more bandwidth, agile infrastructures, innovative services, while keeping costs low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as key trends of 5G network architectures, providing flexibility, fast instantiation times, support of Commercial Off The Shelf hardware and significant cost savings. NFV leverages Cloud Computing principles to move the data-plane network functions from expensive, closed and proprietary hardware to the so-called Virtual Network Functions (VNFs). In this paper we deal with the management of virtual computing resources (Unikernels) for the execution of VNFs. This functionality is performed by the Virtual Infrastructure Manager (VIM) in the NFV MANagement and Orchestration (MANO) reference architecture. We discuss the instantiation process of virtual resources and propose a generic reference model, starting from the analysis of three open source VIMs, namely OpenStack, Nomad and OpenVIM. We improve the aforementioned VIMs introducing the support for special-purpose Unikernels and aiming at reducing the duration of the instantiation process. We evaluate some performance aspects of the VIMs, considering both stock and tuned versions. The VIM extensions and performance evaluation tools are available under a liberal open source licence

    Well-posedness of the boundary layer equations

    Get PDF
    We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. The proof is achieved applying the abstract Cauchy-Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433-461], as we do not require analyticity of the data with respect to the normal variable
    • …
    corecore